Reversal of bimanual feedback responses with changes in task goal.
نویسندگان
چکیده
We show that fast bimanual coordinative feedback responses can be reversed with changes in task goals. Participants moved a flexible virtual object across a finish line with an upward movement of both hands. In one condition, the middle of the object had to be aligned with a spatial goal at the end of the movement. In the second condition, the object had to be kept at a specific length. During the movement, a velocity-dependent force field was applied randomly to one of the hands to the left or to the right. Depending on the task condition, the unperturbed hand showed fast feedback corrections, either in or against the direction of the force field on the other hand. In the object-length condition we found evidence for a mixture of task goals: early in the movement the correction of the unperturbed hand was aimed at stabilizing object length; later in the movement, the correction reversed direction to reach a symmetric body posture in the end of the movement. The observed differences in feedback responses between task conditions also influenced the covariance structure of unperturbed movements and the adaptation when a specific force field was applied repeatedly to one of the hands. The results are congruent with the notion that coordination is established flexibly through a representation of the task-relevant controlled variables, rather than through a direct interaction between motor commands.
منابع مشابه
Interference of Various Sources of Sensory Feedback on Transition of Relative Phase in Bimanual Coordination on Active and Inactive Woman With Multiple Sclerosis
Purpose: Comparing the effects of manipulating senses on relative phase transition bimanual coordination pattern of active and inactive women with Multiple Sclerosis (MS). Methods: The methodology of this study was repeated-measures design. Study participants comprised 10 active women and 10 inactive women with multiple sclerosis who voluntarily participated in this experiment. The participant...
متن کاملShared bimanual tasks elicit bimanual reflexes during movement.
Previous research has suggested distinct predictive and reactive control mechanisms for bimanual movements compared with unimanual motion. Recent studies have extended these findings by demonstrating that movement corrections during bimanual movements might differ depending on whether or not the task is shared between the arms. We hypothesized that corrective responses during shared bimanual ta...
متن کاملContinuous theta-burst stimulation to primary motor cortex reveals asymmetric compensation for sensory attenuation in bimanual repetitive force production.
Studies of fingertip force production have shown that self-produced forces are perceived as weaker than externally generated forces. This is due to mechanisms of sensory reafference where the comparison between predicted and actual sensory feedback results in attenuated perceptions of self-generated forces. Without an external reference to calibrate attenuated performance judgments, a compensat...
متن کاملTask-dependent coordination of rapid bimanual motor responses
Optimal feedback control postulates that feedback responses depend on the task relevance of any perturbations. We test this prediction in a bimanual task, conceptually similar to balancing a laden tray, in which each hand could be perturbed up or down. Single-limb mechanical perturbations produced long-latency reflex responses ("rapid motor responses") in the contralateral limb of appropriate d...
متن کاملGoal synchronization of bimanual skills depends on proprioception.
The present experiments in Human subjects were designed to test whether proprioceptive feedback plays a role in optimising bimanual synchronization in a goal-oriented familiar task. Goal-synchronization is a typical feature of bimanual everyday skills. The purpose of the study was to disturb proprioceptive signalling by means of vibrating the leading left limb while subjects performed a bimanua...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 101 1 شماره
صفحات -
تاریخ انتشار 2009